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Abstract Probability estimators developed previously by

the authors have been used to obtain unbiased estimates of

the Weibull parameters by the linear regression method.

Using these unbiased estimators, percentiles of the Weibull

distribution have been estimated. Since these percentiles

are determined from the estimated parameters, they also

have distributions and subsequently are determined for five

sample sizes. Analysis has shown that the distributions of

these estimated percentiles are neither normal, lognormal,

three-parameter Weibull nor three-parameter log-Weibull.

A new methodology to estimate the percentile with a

specified level of confidence has been introduced. The step-

by-step use of the methodology is demonstrated by

examples in this paper.

Introduction

Weibull statistics is widely used to model the variability in

the fracture properties of ceramics and metals, where the

concept of weakest link applies. For the two-parameter

Weibull distribution, the cumulative probability, P, that a

part will fracture at a given stress, r, or below can be

predicted as [1];

P ¼ 1� exp � r
r0

� �m� �
ð1Þ

where r0 is the scale parameter and m is the Weibull

modulus, alternatively referred to as the shape parameter.

There are several methods available in the literature to

estimate the Weibull parameters such as linear regression,

maximum likelihood method, and method of moments.

Among these methods, the most popular method is linear

regression method, mainly because of its simplicity; taking

the logarithm of Eq. 1 twice, it yields a linear equation:

ln � lnð1� PÞ½ � ¼ m lnðrÞ � m lnðr0Þ ð2Þ

Regardless of which method is used, the estimates of

Weibull parameters, by definition, have their own

distribution. The bias, i.e., the difference between the

true parameter and the average of the average of the

distribution of the estimates, as well as the standard error in

the estimates depends on the method used [2–4].

Once the Weibull parameters are estimated, it is of

interest to obtain conservative estimates such as in design

values, by estimating a given percentile of the Weibull

distribution. Estimated percentiles also have a distribution

and therefore confidence levels are usually indicated for

such conservative estimates. For instance, Mil-Handbook-5

[5] defines ‘‘A’’-design allowables for alloys to be used in

aerospace applications as the values for which at least 99%

of the population are expected to equal or exceed (1st per-

centile) with a confidence of 95%. ‘‘B’’ allowables represent

90% exceedance (10th percentile) at the same confidence

level of 95%. Because the method for estimating the Wei-

bull parameters determines the average and standard

deviation of estimates, it will also affect the estimated

percentiles, as demonstrated by Barbero et al. [6, 7].

Although there have been many studies in which the

distribution of the Weibull parameters were investigated, it
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is the authors’ opinion that the estimated Weibull percen-

tiles have not received the same level of attention. The

present study has been motivated by this gap in the liter-

ature and builds on a recent study [8] by the authors in

which probability estimators for unbiased estimates of

Weibull parameters were introduced for 30 sample sizes

(n) ranging from 5 to 100. A new approach for estimating

percentiles is first introduced and then applied to the linear

regression method, using probability estimators that yield

no bias for the estimates of the Weibull modulus and the

scale factor.

Background

To obtain a given percentile of the Weibull distribution,

Eq. 1 can be rearranged as;

rP ¼ r0 � lnð1� PÞ½ �1=m ð3Þ

where rP is the Pth percentile. The ratio of five percentiles

ranging from 1 to 50 to the scale parameter is plotted in

Fig. 1. Note that the value of m has a profound effect on the

ratio. Because r0 and m are unknown, their estimates, r̂0

and m̂ have to be used to estimate the percentile. Because

r̂0 and m̂ have their own distributions, the estimated per-

centiles will have a distribution, which can be expected to

be dominated by the distribution of m̂, because of the

profound effect of m on the percentile, as shown in Fig. 1.

The distribution of the Weibull parameters have been

investigated in several studies. In one of the earliest stud-

ies, Ritter et al. [9] ran Monte Carlo simulations and

concluded that the distribution of the estimated Weibull

modulus is approximately normal. These researchers ran

Monte Carlo simulations only 100 times. It has since been

shown [1, 7, 10] that the distribution of m is positively

skewed. Gong and Wang [10] stated that m follows a

lognormal distribution for linear regression and maximum

likelihood methods. Barbero et al. [6] claimed that the

distribution of m estimated by the maximum likelihood

method is better expressed by a three-parameter Weibull

distribution. In a later publication [7], the same authors

found that three-parameter log-Weibull distribution pro-

vides a better fit to m estimated by the maximum likelihood

method than lognormal and three-parameter Weibull dis-

tributions. Recently Tiryakioğlu [4] analyzed the

distribution of m estimated by the maximum likelihood and

moments methods using the Anderson–Darling goodness-

of-fit test [11–13]. The author found that the distribution of

m̂ for 5 B n B 50 is neither normal, lognormal, nor three-

parameter Weibull for the maximum likelihood method.

For the moments method, the distribution of m̂ was found

to be lognormal for n C 40. For any sample size, the

normal three-parameter Weibull distributions did not pro-

vide a good fit.

More recently, the authors [8] developed probability

estimators that yield unbiased estimates of the Weibull

parameters for samples sizes (n) between 5 and 100.

Moreover, they analyzed the distribution of normalized r̂0

and m̂ and found that (i) the distribution of normalized r̂0 is

normal [8], and (ii) the distribution of normalized m̂ is

neither normal, lognormal, three-parameter Weibull, nor

three-parameter log-Weibull [3]. Although the distribution

of r̂0 is normal, it is reasonable to expect that the distri-

bution of percentiles estimated by probability equations

recently introduced by the authors [8] will not follow any

of the four distributions indicated above.

This study is a continuation of the research on unbiased

estimates of the Weibull parameters using the linear

regression technique.

Research methodology

Monte Carlo simulations were used to generate n data

points from a Weibull distribution with r0 = 1 and m = 1.

The probability estimators that yield unbiased estimates of

the Weibull parameters reported by the authors [8] were

used. These probability estimators have the form,

P ¼ i� a

nþ b
ð4Þ

where i is the rank of the data point in the sample in

ascending order, n represents the sample size, and a and b

are numbers, such that 0 B a B 0.5 and 0 B b B 1.0. The

authors provided a table (Table 1 in Ref. [8]), in which a

and b for each sample size are listed. Thirty sample sizes

ranging from 5 to 100 were investigated. At each iteration,

n random numbers between 0 and 1 were generated to

obtain a set of r values. The estimates of Weibull modulus

and scale factor (m̂ and r̂0, respectively) were obtained

by Eq. 2. For each sample size, the experiment was
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Fig. 1 The plot of rP/r0 as a function of m for various percentiles
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repeated 20,000 times. Estimated percentile points were

calculated as;

r̂P ¼ r̂0 ð� lnð1� PÞÞ
1
m̂

h i
ð5Þ

Results and discussion

A histogram of estimated 5th percentiles for n = 30 is

presented in Fig. 2 where f is probability density. The

distribution is positively skewed, similar to the distribution

of m̂, showing the dominance of the estimated Weibull

modulus on the distribution of r̂P.

Hypothesis tests were conducted for goodness of fit for

the normal, lognormal, three-parameter lognormal, three-

parameter Weibull, and three-parameter log-Weibull dis-

tributions, using the Anderson–Darling statistic. In all

cases, the hypothesis that the distribution of estimated

percentile followed the inferred distribution was rejected.

Consequently, percentage points of the distributions for

each sample were generated. Tables for five sample sizes

(n = 10, 20, 30, 40, 50) are provided in Tables 1, 2, 3, 4,

and 5. Tables for other sample sizes can be obtained by

contacting the authors.

The percentage points in Tables 1, 2, 3, 4, and 5 were

generated for the case where r0 = 1 and m = 1. When the

scale and shape factors are different from unity, then a

transformation is required. For the case r̂00 ¼ k, the trans-

formation is straight forward; because r is a linear function

of r̂0, the desired percentile can be obtained from the

appropriate table and multiplied by k. For instance, assume

that 10th percentile for n = 20 is desired with a confidence

level of 95% (as in B allowable) when r̂00 ¼ 12 and m̂ ¼ 1.

From Table 2, r̂P is found to be 0.101. Hence the 10th

percentile with a confidence level of 95% is found to be

1.212 (0.101 9 12).

The transformation of the percentiles for Weibull

modulus different from 1 is more complicated. Let us

assume that r0 = 1 and m0 = k. If we wish to determine

the distribution of rP for a given percentile, P0, we would

again solve for r as in Eq. 5:

r0P ¼ r̂0 ð� lnð1� P0ÞÞ
1

m̂0
h i

ð5aÞ

where m̂0 ¼ km̂. Inserting Eq. 5a into Eq. 1, we obtained:

P ¼ 1� exp �
r̂0 ð� lnð1� P0ÞÞ

1
km̂

h i
r̂0

0
@

1
A

m̂
8><
>:

9>=
>;

¼ 1� exp � ð� lnð1� P0ÞÞ
1
k

h in o
ð6Þ

Therefore to find a percentile P0 when r0 = 1 and

m0 = k, then it is necessary to compute the percentile P

from Eq. 6, where P represents the percentiles when using

r0 = 1 and m = 1, as presented in Tables 1, 2, 3, 4, and 5.

As an example, consider the case where r0 = 1 and

m = 3 and it is necessary to find the distribution for the

10th percentile for n = 20. Substituting k = 3, and

P0 = 0.10 in Eq. 6 yields P = 0.376. In other words, the

distribution for the 37.6th percentile when r0 = 1 and

m = 1 will be the same as the distribution for the 10th

percentile when r0 = 1 and m = 3. In a short paper, it is

not feasible to give distributions for all percentiles and all

multiple sample sizes to the accuracy above (such as the

37.6th percentile). However, it is possible to interpolate

between the percentage points given in Tables 1, 2, 3, 4,

and 5 to obtain approximate distributions.

After evaluating various examples, it became clear that a

geometric rather than a linear interpolation gives signifi-

cantly closer results. In the above case for n = 20, a

geometric interpolation was used between the distributions

for the 30th and 40th percentiles. For each value X in the

30th percentile distribution and each value Y in the 40th

percentile, the value Z for the 37.6th percentile was com-

puted as:

Z ¼ X1�aYa ð7Þ

Because 37.6 is 76% of the distance between 30 and 40

is a = 0.76. In this example, the geometric interpolation

gave results within 2% and in many cases less than 1% of

the true values. The results of this example are summarized

in Table 6.

Calculation of a confidence interval for a percentile

To illustrate the calculation for a confidence interval for a

specified percentile, let us assume that, from a sample size

of 40, we wish to compute a value such that 90% of the

population is greater than this value with a confidence level

of 97%. This will be done in three steps:

f
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Fig. 2 Probability density of estimated 5th percentile results for

n = 30
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1. First, assume that the sample shape and scale param-

eters are calculated as m̂ ¼ 7:0 and r̂0 ¼ 3:5,

respectively, by the linear regression method and

using the probability estimators that yield unbiased

estimates of the Weibull parameters. Table 2 in Ref.

[8] gives 0.99 point of the distribution for m̂/m with

n = 40 as 1.424. Therefore, the one-sided 99%

confidence interval for m is calculated as m [ 4.92

(=7/1.424). Similarly, a one-sided 99% confidence

interval for an unbiased estimator for r0 is r0 [ 3.09.

Table 1 Percentage points for percentile estimators (m = 1, r0 = 1), n = 10

Distribution Percentiles

1 2.5 10 20 30 40 50 60 70 80 90 95 97.5 99

0.005 0.0000 0.0001 0.004 0.024 0.076 0.18 0.37 0.63 0.87 1.10 1.35 1.56 1.72 1.90

0.010 0.0000 0.0003 0.006 0.034 0.095 0.21 0.40 0.66 0.90 1.15 1.43 1.65 1.84 2.07

0.025 0.0001 0.0007 0.011 0.049 0.123 0.25 0.44 0.69 0.96 1.21 1.54 1.80 2.05 2.33

0.050 0.0003 0.0014 0.018 0.066 0.151 0.28 0.48 0.73 0.99 1.27 1.64 1.95 2.24 2.58

0.100 0.0007 0.0030 0.028 0.091 0.188 0.33 0.52 0.77 1.04 1.35 1.78 2.16 2.51 2.94

0.900 0.0400 0.0766 0.211 0.359 0.504 0.66 0.83 1.05 1.43 2.14 3.69 5.53 7.67 10.82

0.950 0.0593 0.1052 0.257 0.413 0.557 0.71 0.87 1.09 1.50 2.37 4.39 6.95 10.01 14.81

0.975 0.0795 0.1341 0.299 0.459 0.603 0.75 0.91 1.13 1.57 2.63 5.25 8.82 13.36 20.59

0.990 0.1115 0.1759 0.352 0.512 0.654 0.80 0.95 1.16 1.68 3.03 6.71 11.91 19.03 31.36

0.995 0.1370 0.2062 0.394 0.556 0.695 0.83 0.99 1.19 1.77 3.46 8.23 15.48 26.01 45.30

Table 2 Percentage points for percentile estimators (m = 1, r0 = 1), n = 20

Distribution Percentiles

1 2.5 10 20 30 40 50 60 70 80 90 95 97.5 99

0.005 0.0002 0.0009 0.014 0.057 0.138 0.27 0.47 0.71 0.96 1.21 1.54 1.82 2.07 2.35

0.010 0.0003 0.0013 0.017 0.067 0.154 0.29 0.49 0.74 0.99 1.25 1.60 1.90 2.17 2.49

0.025 0.0005 0.0024 0.025 0.085 0.182 0.32 0.52 0.76 1.02 1.31 1.70 2.04 2.35 2.74

0.050 0.0010 0.0039 0.033 0.101 0.205 0.35 0.54 0.79 1.05 1.35 1.78 2.16 2.51 2.95

0.100 0.0017 0.0062 0.044 0.123 0.234 0.38 0.57 0.81 1.08 1.40 1.88 2.32 2.73 3.24

0.900 0.0296 0.0604 0.181 0.323 0.466 0.62 0.79 1.01 1.35 1.95 3.14 4.50 5.96 8.07

0.950 0.0395 0.0761 0.209 0.358 0.502 0.65 0.83 1.04 1.40 2.09 3.54 5.24 7.14 9.95

0.975 0.0491 0.0904 0.233 0.386 0.532 0.68 0.85 1.07 1.45 2.24 3.95 6.06 8.52 12.25

0.990 0.0635 0.1114 0.265 0.422 0.568 0.72 0.88 1.09 1.52 2.46 4.63 7.41 10.71 15.93

0.995 0.0756 0.1283 0.292 0.451 0.596 0.74 0.90 1.12 1.57 2.64 5.18 8.64 12.84 19.59

Table 3 Percentage points for percentile estimators (m = 1, r0 = 1), n = 30

Distribution Percentiles

1 2.5 10 20 30 40 50 60 70 80 90 95 97.5 99

0.005 0.0004 0.0018 0.020 0.076 0.168 0.31 0.51 0.75 1.00 1.28 1.66 1.99 2.28 2.65

0.010 0.0006 0.0025 0.026 0.087 0.185 0.33 0.53 0.77 1.02 1.31 1.71 2.05 2.37 2.76

0.025 0.0010 0.0040 0.034 0.104 0.211 0.36 0.55 0.79 1.05 1.35 1.79 2.17 2.53 2.97

0.050 0.0016 0.0058 0.043 0.121 0.232 0.38 0.57 0.81 1.08 1.39 1.85 2.28 2.67 3.17

0.100 0.0026 0.0084 0.054 0.141 0.258 0.41 0.60 0.83 1.11 1.44 1.94 2.41 2.86 3.42

0.900 0.0250 0.0527 0.167 0.306 0.448 0.60 0.78 1.00 1.33 1.89 2.96 4.15 5.42 7.22

0.950 0.0319 0.0640 0.188 0.333 0.476 0.63 0.80 1.02 1.37 1.99 3.25 4.68 6.25 8.52

0.975 0.0388 0.0751 0.208 0.356 0.500 0.65 0.82 1.04 1.41 2.11 3.57 5.28 7.20 9.96

0.990 0.0474 0.0880 0.230 0.382 0.527 0.68 0.85 1.06 1.46 2.27 4.05 6.21 8.73 12.55

0.995 0.0545 0.0976 0.245 0.400 0.546 0.69 0.87 1.08 1.51 2.45 4.48 7.04 10.09 14.77
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2. We now consider Eq. 6 using m = 4.92, with

r0 = 1.0. The one-sided 99% confidence interval for

the population 10th percentile when m = 4.92 and

r0 = 1.0 corresponds to the confidence interval for the

46.9th percentile when m = 1.0 and r0 = 1.0.

Interpolating using results for the 10th percentile in

Table 4 gives a 99% confidence that the 10th percen-

tile is greater than 0.48. That is, we are 99% confident

that 90% of the population is greater than 0.48.

3. Finally, we combine the various confidence intervals.

Thus, if r0 = 1.0, we can be 99% confident that

m [ 4.92 and given that m is in this range, we can be

99% confident that the 10th percentile is greater than

0.48. That is, we are approximately 98% (0.992)

confident that the population 10th percentile is greater

than 0.48 when r0 = 1.0. Further, we are 99%

confident that r0 is greater than 3.09 so we can be

approximately 97% (0.98 9 0.99) confident that the

10th percentile is greater than 1.48 (3.09 9 0.48).

Conclusions

The distributions of the estimated percentiles in this paper

are neither normal, lognormal, three-parameter Weibull,

Table 4 Percentage points for percentile estimators (m = 1, r0 = 1), n = 40

Distribution Percentiles

1 2.5 10 20 30 40 50 60 70 80 90 95 97.5 99

0.005 0.0007 0.0031 0.029 0.094 0.196 0.34 0.54 0.78 1.04 1.33 1.73 2.08 2.41 2.80

0.010 0.0010 0.0039 0.033 0.103 0.208 0.36 0.55 0.79 1.05 1.35 1.78 2.16 2.51 2.94

0.025 0.0015 0.0055 0.041 0.119 0.229 0.38 0.57 0.81 1.07 1.38 1.84 2.25 2.64 3.12

0.050 0.0021 0.0073 0.049 0.133 0.248 0.40 0.59 0.83 1.10 1.42 1.90 2.35 2.77 3.31

0.100 0.0031 0.0099 0.059 0.151 0.270 0.42 0.61 0.85 1.12 1.46 1.98 2.48 2.95 3.55

0.900 0.0224 0.0483 0.157 0.294 0.435 0.59 0.77 0.99 1.31 1.84 2.86 3.97 5.15 6.79

0.950 0.0278 0.0573 0.176 0.317 0.460 0.61 0.79 1.00 1.34 1.92 3.07 4.35 5.73 7.72

0.975 0.0332 0.0660 0.192 0.337 0.481 0.63 0.81 1.02 1.37 2.01 3.30 4.77 6.38 8.71

0.990 0.0406 0.0777 0.212 0.360 0.505 0.66 0.83 1.04 1.41 2.13 3.62 5.36 7.31 10.18

0.995 0.0461 0.0861 0.227 0.377 0.521 0.67 0.84 1.06 1.45 2.23 3.86 5.80 8.07 11.43

Table 5 Percentage points for percentile estimators (m = 1, r0 = 1), n = 50

Distribution Percentiles

1 2.5 10 20 30 40 50 60 70 80 90 95 97.5 99

0.005 0.0009 0.0036 0.032 0.101 0.206 0.35 0.55 0.79 1.05 1.34 1.77 2.15 2.50 2.93

0.010 0.0012 0.0047 0.037 0.111 0.221 0.37 0.56 0.80 1.06 1.37 1.81 2.22 2.59 3.05

0.025 0.0019 0.0067 0.046 0.129 0.242 0.39 0.59 0.82 1.09 1.40 1.88 2.31 2.71 3.23

0.050 0.0026 0.0086 0.054 0.142 0.260 0.41 0.60 0.84 1.10 1.43 1.93 2.40 2.84 3.40

0.100 0.0037 0.0112 0.064 0.159 0.280 0.43 0.62 0.85 1.13 1.47 2.01 2.51 3.00 3.61

0.900 0.0212 0.0461 0.153 0.288 0.429 0.58 0.76 0.98 1.30 1.82 2.78 3.83 4.93 6.44

0.950 0.0258 0.0538 0.169 0.309 0.451 0.60 0.78 1.00 1.33 1.89 2.98 4.17 5.44 7.25

0.975 0.0300 0.0609 0.183 0.325 0.469 0.62 0.80 1.01 1.36 1.97 3.17 4.53 6.00 8.11

0.990 0.0359 0.0705 0.199 0.347 0.492 0.64 0.82 1.03 1.40 2.08 3.48 5.07 6.89 9.52

0.995 0.0403 0.0773 0.212 0.362 0.506 0.66 0.83 1.04 1.43 2.19 3.75 5.56 7.62 10.64

Table 6 Demonstration of the interpolation technique

Probability 30th

percentile

40th

percentile

37.6th percentile

Interpolated Actual Error

0.005 0.138 0.27 0.2305 0.2334 -1.2%

0.010 0.154 0.29 0.2482 0.2515 -1.3%

0.025 0.182 0.32 0.2813 0.2846 -1.2%

0.050 0.205 0.35 0.3070 0.3101 -1.0%

0.100 0.234 0.38 0.3387 0.3417 -0.9%

0.900 0.466 0.62 0.5792 0.5818 -0.5%

0.950 0.502 0.65 0.6135 0.6163 -0.5%

0.975 0.532 0.68 0.6423 0.6446 -0.4%

0.990 0.568 0.72 0.6774 0.6794 -0.3%

0.995 0.596 0.74 0.7025 0.7033 -0.1%
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nor three-parameter log-Weibull. As a result, it is necessary

to generate tables for the distribution of percentiles. This

was done for five sample sizes when the shape and scale

parameters are both equal to one.

A geometric interpolation method is used to develop

distributions of percentiles when the shape and scale

parameters differ from one. Further, since in practice, the

shape and scale parameters that would be used in this

interpolation are themselves estimates from data, a step-by-

step procedure for determining the distribution for the true

percentiles is demonstrated through the use of examples.
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3. Tiryakioğlu M, Hudak D (2007) J Mater Sci 42:10173. doi:

10.1007/s10853-007-2060-5
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